logo

Li-ion batteries and Applications

Table of Contents

Back
Volume 1
1 Preface 1
1.1 Scope 1
      What this book is 1
      What this book is not 1
      Intended audience 1
      Orientation 1
1.2 The most important point 2
1.3 About 2
      About me 2
      About my company 3
      About this book 3
      
      About the contributors 3
2 Fundamental concepts 5
2.1 Introduction 5
2.2 Terminology and misnomers 5
2.2.1 Cell vs battery 5
2.2.2 Anode and cathode 6
2.2.3 Lithium vs Li-ion 7
2.2.4 "LiPo" 7
2.2.5 Li-ion vs LiFePO4 or other chemistry 7
2.2.6 "C-rating" 7
2.3 Common misunderstandings 8
2.3.1 Charging while discharging 8
2.3.2 AC adapter current too high 9
2.3.3 Over-unity 9
2.3.4 Confused measures 10
2.4 Measures 10
2.4.1 Ω - Resistance and impedance 10
2.4.2 V - Voltage 11
2.4.3 Ah - Charge, capacity 11
      Charge 12
      Capacity 12
      Effective capacity 12
      Other measures 12
2.4.4 % - Charge efficiency 12
2.4.5 A - Current 12
      Sign 13
2.4.6 1/h - Specific current, "C-rate" 13
2.4.7 Wh, J - Energy 13
2.4.8 Wh/kg, J/kg - Specific energy 14
2.4.9 Wh/l, J/l - Energy density 14
2.4.10 % - Energy efficiency 14
2.4.11 W - Power 15
2.4.12 W/kg - Specific power 15
2.4.13 W/l - Power density 15
2.4.14 % - Power efficiency 15
2.4.15 F - Capacitance 16
2.5 Maximum Power Point 16
2.6 Maximum Power Time 17
2.6.1 MPT definition 18
2.6.2 MPT empirical characterization 18
      Timing a discharge cycle 18
      From voltage sag 18
2.6.3 MPT derivation from specs 19
      From specification data 19
      From discharge curves 19
2.6.4 Typical values of MPT 20
2.6.5 MPT conversions 21
      Series resistance calculation 21
      Energy efficiency calculation 22
      Voltage sag calculation 23
2.6.6 Using the MPT 23
2.7 States 24
2.7.1 States of alphabet soup 24
2.7.2 State of Charge (SoC) 25
      Physical SoC 25
      Operating SoC 25
      String SoC 26
      Array SoC 26
2.7.3 State of Energy (SoE) 26
2.7.4 State of Health (SoH) 27
2.7.5 Other "State of" 27
2.7.6 Depth of Discharge (DoD) 28
2.7.7 Charge Acceptance, Discharge Availability 28
2.8 Charts 29
2.8.1 Radar chart 30
2.8.2 Ragone plot 32
2.8.3 MPT based Ragone plot 37
2.9 Power conversion 39
2.9.1 AC to DC 40
2.9.2 DC to DC 41
      Charger with DC input 42
2.9.3 DC to AC 42
      Inverter 42
2.9.4 Bidirectional AC and DC 42
      Inverger (charger / inverter, "combi") 42
      AC motor driver for traction 42
2.9.5 Any direction 43
      Transverter 43
2.10 Electrical schematic diagram symbols 43
3 Li-ion cells 45
3.1 Introduction 45
3.1.1 Cell definition 45
3.2 Types of cells 45
3.2.1 Cell chemistry 46
3.2.2 Cell formats 48
      Small cylindrical 49
      Large cylindrical 49
      Large prismatic 49
      Small prismatic 50
      Pouch 50
3.2.3 Energy vs power cells 50
3.3 Cell characterization 52
3.3.1 Perspectives for characterization 52
3.3.2 Equivalent model 52
3.3.3 Safe Operating Area (SOA) 53
      Safety 55
3.3.4 Cell life 55
      Cycle and calendar life 55
      Cycle life 56
      Calendar life 56
3.4 Voltage and SoC 56
3.4.1 Terminal voltage and Open Circuit Voltage (OCV) 57
      IR drop, voltage sag 57
      Relaxation 58
      Hysteresis 58
3.4.2 Voltage ranges 59
3.4.3 Voltage vs SoC curves 60
      Discharge curves 60
      CCCV charging curves 61
      OCV vs SoC curve 63
      Differential OCV vs SoC 64
3.4.4 Cell SoC 65
3.4.5 Voltage specifications and characteristics 66
      Spec sheet 66
      OCV vs SoC table 66
3.4.6 Expansion and contraction 67
      Allowing for expansion 68
3.5 Capacity, energy, and charge efficiency 68
3.5.1 Capacity 68
      Nominal capacity 68
      Operational capacity 68
      Effective capacity 69
3.5.2 Capacity fade, cycle life 69
      Minimizing capacity fade, maximizing cell use 70
      Cycle life prolongation 74
3.5.3 Capacity fade, calendar life 74
3.5.4 Energy 74
      Energy density and specific energy 75
      Operational and effective energy 75
      Actual Energy 76
3.5.5 Energy efficiency 76
3.5.6 Charge efficiency 76
      Life 77
3.6 Resistance, impedance, maximum power time 77
3.6.1 Resistance and Maximum Power Time 77
      Nominal DC resistance 77
      Actual DC resistance 77
      Resistance degradation 78
      Nominal MPT 79
3.6.2 Impedance 82
3.7 Current, power and self-discharge 83
3.7.1 Current 83
      Typical characteristics 83
      Specifications 83
      Maximum power current 84
      Operational current limits 84
3.7.2 Power 84
3.7.3 Self-discharge current 85
3.8 Cell selection and procurement 88
3.8.1 Liars, damn liars, and battery manufacturers 88
3.8.2 Reading specification sheets 88
      Verification 88
      Spec sheets styles 88
      Cell part number 89
      Voltage 89
      Capacity 90
      Charging limits 90
      Discharging limits 91
      Energy 91
      Power 91
      Energy density and specific energy 92
      Power density and specific power 92
      Temperature 92
      AC Impedance 92
      DC Resistance 92
      Cycle Life 92
      Calendar life 93
      Mass (weight) 93
      Size 93
      Curves 93
      Power curves 96
3.8.3 Cell sourcing 97
4 Cell arrangement 99
4.1 Introduction 99
4.1.1 Possible cell arrangements 99
4.1.2 Cell arrangement notation 99
4.1.3 Cell arrangement characteristics 101
      Parallel and series connection 101
4.1.4 Module arrangement 102
4.2 Series strings 103
4.2.1 Current in series strings 103
      Charging and discharging 103
      Stopping charging and discharging 105
      Main fuse 105
      Safety disconnect 105
4.2.2 Voltage in series strings 106
      Maximum string voltage 106
4.2.3 Mismatched cells in series strings 107
4.2.4 String SoC 107
4.2.5 String imbalance 108
      Balanced vs imbalanced 108
      Same capacity, balanced 109
      Same capacity, unbalanced 110
      Different capacity, mid balanced 112
      State of Balance 113
4.2.6 Optimal balance point 113
4.2.7 Imbalance detection 115
4.2.8 Imbalance causes 116
      Self discharge 117
      Cycling 117
4.2.9 Balancing 118
      Required balancing current 118
      Balancing methods 118
      Balancing time 119
4.2.10 Over-discharge and reversal 119
4.2.11 Transitional spikes 120
      Negative spikes 120
      Positive spikes 121
4.3 Parallel blocks 122
4.3.1 Voltage in parallel blocks 122
4.3.2 Current in parallel blocks 122
4.3.3 Temperature in parallel blocks 123
4.3.4 Mismatched cells in parallel blocks 123
4.3.5 Fuse-per-cell 123
      Individual fuses are required 124
      Individual fuses create more problems than they solve 124
      Individual fuses are a solution in search of a problem 125
4.3.6 Many small cells in parallel vs one large cell 127
4.3.7 Equalizing inrush current 127
4.4 Parallel-first 132
4.5 Series-first 132
4.5.1 Disadvantages of series-first 132
      Higher cost 132
      Worse performance 133
      Equalizing inrush current 135
4.5.2 Perceived advantages of series-first 135
      Flexibility 136
      Redundancy 136
      Modularity 137
4.5.3 Actual advantages of series-first 137
4.5.4 Current in series-first 137
      Fuse per string 137
4.5.5 Voltage in series-first 138
4.5.6 Mismatched strings, mixing battery types 138
      Mismatched strings 138
      Different types of batteries 138
5 Li-ion BMSs 141
5.1 BMS introduction 141
5.1.1 BMS definition 141
      Not a BMS 141
      A BMS is not optional 142
      A BMS is not a charger 142
5.1.2 BMS type 142
5.1.3 BMS topologies 144
5.1.4 BMS format 148
5.2 Analog protector BMS, Protector Circuit Module (PCM) 148
5.2.1 PCM placement 148
5.2.2 PCM functionality 150
      Voltage protection 150
      Current protection 151
      Temperature protection 151
      Protector switch 151
      Fuse 151
      Balancing 151
5.2.3 Protected 18650 batteries 151
5.2.4 Charger / PCM combo 152
5.3 Digital protector 152
      Small batteries 153
      Medium batteries 153
      Large batteries 153
5.4 Digital BMU 153
5.4.1 Digital BMS States 154
5.4.2 Digital BMS functions 155
5.5 Measurement 156
5.5.1 Cell voltage 156
      Range 156
      Measurement accuracy and resolution 156
      Measurement rate 157
      Fault protector 157
5.5.2 Additional voltages 158
5.5.3 Temperature 158
5.5.4 Current 159
      Current sensors 159
5.6 Current limits and turn off, warnings and faults 160
5.6.1 Current limits 160
5.6.2 Current turn off 160
5.6.3 Warnings and faults 161
      Cell voltage, temperature, current 161
      Other causes 162
5.7 Balancing 162
5.7.1 Required balance current 162
5.7.2 Balance technologies: dissipative vs charge transfer 164
      "Passive" and "active" balancing 165
      Dissipative balancing 165
      Charge transfer balancing 166
5.7.3 Charge transfer topologies 166
5.7.4 Balancing algorithms 170
      Voltage based, top balancing 171
      SoC based balancing 172
5.7.5 Charging during top balancing 172
      Reduce charger current 173
      Turn charger off and on 173
5.7.6 Redistribution 174
      Converter power 176
      Redistribution vs. additional cells 176
      Redistribution benefits 176
5.8 Evaluation 177
5.8.1 State of Charge evaluation 177
      SoC evaluation methods 177
5.8.2 Effective capacity evaluation 179
5.8.3 OCV evaluation 180
5.8.4 Resistance evaluation 181
      Cell resistance 181
      Battery resistance 182
5.8.5 State of Health evaluation 182
5.8.6 State of Power evaluation 182
5.8.7 Ground fault evaluation 182
5.9 Data logging 182
5.10 Control outputs 183
5.10.1 Protector switch and precharge control 183
5.10.2 Thermal management control 183
5.11 Inputs and outputs 184
5.11.1 Power supply inputs 184
5.11.2 Power supply outputs 185
5.11.3 Analog inputs 185
5.11.4 Analog outputs 185
5.11.5 Digital inputs 186
5.11.6 Logic outputs 186
5.11.7 Power outputs 186
5.12 Communication links 187
5.12.1 Physical and data layer 187
5.12.2 Application layer 188
      USB, RS232 188
      ModBus 189
      Standard CAN based protocols 189
5.12.3 Wireless 189
      Bluetooth 189
      WiFi 189
5.13 BMS sourcing 190
      PCMs 190
      BMUs 190
      Switching to a different BMS 191
6 Li-ion batteries 193
6.1 Introduction 193
6.1.1 Battery definition 193
6.1.2 Battery use classification 194
6.1.3 Battery design checklist 195
6.1.4 Avoiding pitfalls 195
6.1.5 Should you design a battery? 195
6.2 Component selection 195
6.2.1 Cells and BMS 195
      Small run 197
      Volume production 197
6.2.2 Other components 197
6.3 Cell installation and interconnection 197
6.3.1 Small cylindrical 197
      Physical arrangement 197
      Mounting 199
      Interconnection 200
      Sensing 200
      Cooling 201
      Enclosing 201
6.3.2 Large Prismatic 202
      Physical arrangement 202
      Mounting 203
      Interconnections 204
      Sensing 204
      Cooling 205
      Enclosing 205
6.3.3 Pouch 205
      Physical arrangement 205
      Mounting 205
      Interconnection 206
      Sensing 207
      Cooling 207
      Enclosing 207
6.3.4 Small prismatic, large cylindrical 208
6.4 BMU Power supply source 208
6.5 Sensing 209
6.5.1 Cell voltage sensing, temperature sensing 209
      Wired BMS 209
      Mated bank boards and PCMs 209
      Distributed cell boards 210
6.5.2 Current sensing 210
      Resistive current sensing 210
      Hall Effect sensor measurement 211
      Two current sensors 212
6.6 Communications 213
6.6.1 External communications 213
      Can bus 213
      RS485 214
      RS232 214
      USB 214
6.6.2 Internal communications 214
      Slave bus 214
      Bank harness 215
6.7 Protection 215
6.7.1 Protection is required 215
6.7.2 Protector switch topologies 216
      Dual switch, single port topology 218
      Dual port topology 219
      External switch topology 220
      External control topology 221
6.7.3 Protector switch components 221
6.7.4 Solid state protector switch circuits 223
      MOSFETs 223
      Two MOSFETs, single port topology 223
      Two MOSFETs, dual port 224
6.7.5 Contactor protector switch circuits 225
      Contactors 225
      Two contactors, single port 226
      Two contactors, dual port 227
      Fault contactor 228
6.7.6 Hybrid protector switch circuit 228
6.8 Precharge 229
6.8.1 Inrush current without precharge 229
6.8.2 Consequences of skipping precharge 231
      EMP 231
      Current 231
6.8.3 Precharge circuit 232
6.8.4 Precharge components 233
      Precharge resistor 233
      Alternatives to resistor 234
      Precharge relay 235
6.8.5 Precharge responsibility 235
6.8.6 Post-discharge 236
6.9 Battery isolation and ground faults 236
6.9.1 Battery isolation 236
      The case for battery isolation 237
      When to isolate a battery 237
      Isolated battery in grounded application 238
      Isolating a battery 239
6.9.2 Ground faults 239
      Types 239
      Causes 240
      Consequences 240
6.9.3 Automatic ground fault detection 240
      Types 240
      Detection thresholds 241
      Ground fault detection requirement 241
      Static DC isolation loss tests 241
      Dynamic DC isolation loss tests 242
      AC isolation loss tests 243
      Soft ground fault current test 243
      Ground fault detectors 245
6.10 Thermal management 245
6.10.1 Introduction 245
6.10.2 Internal heat generation 245
      Estimation 246
      Measurement 247
6.10.3 Thermal management mechanisms and techniques 247
6.10.4 Thermal Insulation 248
6.10.5 Passive heat transfer 249
6.10.6 Active heat transfer - forced air 249
      Forced air ventilation 250
      External air path 250
      Air flow speed 251
      Temperature gradients 252
6.10.7 Active heat transfer - liquid cooling 253
6.10.8 Internal equalization 254
6.10.9 Temporary heat storage 254
      Thermal capacity storage 255
      Phase change material storage 255
6.10.10 Heating 256
6.10.11 Heat pumping, cooling 256
6.10.12 Noise reduction 257
6.11 Mechanical design 258
6.11.1 Enclosure 258
6.11.2 Design for service 258
6.12 Batteries with capacitors 259
6.12.1 Directly in parallel 259
6.12.2 Through DC-DC converter 260
7 Modules and arrays 263
7.1 Introduction 263
7.1.1 "Hey, I have an idea!" 263
      The lead acid legacy 264
7.1.2 ESS subdivision 264
      Single battery vs multiple batteries 266
      Single enclosure vs multiple enclosures 266
7.2 Battery with selectable number of strings in parallel 266
7.3 Modular battery 267
      Case studies 268
7.4 Expandable battery 269
      Case studies 270
7.5 Battery array 270
7.5.1 Array-capable BMS 272
7.5.2 Array master 273
7.5.3 Voltage equalization 274
7.6 Ganged batteries 275
7.6.1 Single bus circuit 276
      System operation 277
      Battery description 277
      Operation 278
7.6.2 Dual bus circuit 279
      System description 279
      System operation 279
      Battery description 280
      Operation 280
7.7 Split battery 281
      Case studies 282
7.7.1 Parallel charging, series discharging 282
7.7.2 Distributed charging, balance charger 284
7.8 Li-ion and lead-acid 285
7.8.1 Lead Acid replacement. 285
      No way to control and stop charging or discharging 286
      Requires the presence of a battery to operate 286
      Same port for charging and discharging 286
      The charger operates autonomously following to a profile designed for lead acid 286
      Low voltage power supply for the BMS electronics 286
7.8.2 Parallel Hybrid L.A. / Li-ion systems 286
      LFP cells 287
      NMC cells 287
      Dangers 288
      Load sharing 288
7.8.3 Sequential Hybrid L.A. / Li-ion systems 290
8 Assembly 295
8.1 Introduction 295
8.2 Safety 295
8.2.1 Work environment 295
8.2.2 Tools and conduct 296
8.2.3 Emergency plan 296
8.3 Preparation 297
8.3.1 Harnesses 297
8.3.2 Cell pre-balancing 298
      Energy and power battery, charge cells individually 298
      Energy and power battery, charge cells in parallel 298
      Buffer battery pre-balancing 299
8.3.3 Terminal preparation 299
8.4 Assembly 299
8.4.1 Safety tips 300
      Wire insulation 300
      Fastening 300
8.4.2 Battery assembly 300
      Single-cell battery, pouch, open assembly 300
      Single cell, small cylindrical 301
      Small multi-cell battery, small cylindrical 301
      Self-balancing scooter battery, small cylindrical cells 302
      Medium sized battery, small cylindrical cells 303
      Small multi-cell battery, pouch 304
      24 V battery, large prismatic cells 305
      EV conversion traction pack, large prismatic cells 306
      Large stationary low voltage battery, large prismatic cells 307
      40 V block, pouch cells 308
8.4.3 BMS installation 309
      Integrity of electronic assemblies 309
      Wired BMS cell voltage sensing 309
      Distributed BMS cell boards 310
      Banked BMS board 311
8.5 Gross balancing 311
8.5.1 Manual balancing 311
8.5.2 Top balance with a gross balancer 312
8.6 Initial testing 313
8.6.1 Battery isolation test 313
      General test procedure 313
      Protector BMSs, powered by the battery, no data port 315
      Same as above, with data port 315
      Centralized BMU, powered by the battery 315
      Same as above, powered externally 315
      Wired master/slave BMS, powered by the cells 315
      Same as above, powered externally 316
      Distributed BMS 316
      Distributed master/slave BMS 316
8.6.2 Basic electrical test 316
8.7 Configuration 316
8.8 Functional testing 318
9 Dysfunctions 321
9.1 Introduction 321
9.1.1 Damage 321
9.1.2 Troubleshooting and repair 321
9.1.3 Resources 322
9.2 Cell damage 323
9.3 BMS damage 323
9.3.1 Disconnected from cell 324
      Before installation 324
      Miswired cell voltage sensing 324
      Installing to a battery that is not completely disconnected from anything else 325
      Connection opens between cells 326
9.3.2 Noise 327
      Tap wires are antennas 327
      Voltage across bus bars 328
9.3.3 Transitional spikes 328
      Negative spikes 328
      Positive spikes 329
      BMS sensitivity to over-voltages 329
      Problem reduction 330
9.3.4 Over-discharge and reversal 330
9.3.5 Over-charge 331
9.3.6 Other BMS damage 331
      Shorts circuits 331
      Power supply inputs and outputs 333
      Driver outputs 333
      Relay dry contacts 333
      Communication ports 333
      Signal inputs 333
      Mechanical damage 334
9.4 Battery damage 334
9.4.1 Protector switch 334
9.5 Power up troubleshooting 335
9.5.1 No BMS power 335
9.5.2 BMS power cycles constantly 336
9.5.3 Warnings and faults troubleshooting 337
9.5.4 Current limits troubleshooting 338
9.6 Measurements troubleshooting 338
9.6.1 Cell voltage troubleshooting 338
9.6.2 Wired BMS troubleshooting 339
      Missing bank 339
      Slowly drifting cell voltage reading, full scale or 0 V 339
9.6.3 Distributed BMS troubleshooting 339
      All banks are missing 339
      One bank is missing all the time 339
      Missing bank in the presence of noise 340
      Missing line of cell boards 340
      Missing cell board 340
      Cell missing in the presence of noise 341
      Doesn't report for awhile, after the contactor closes 341
      Extra cells 341
      One board reports minimum or maximum voltage 341
9.6.4 Battery voltage troubleshooting 341
9.6.5 Temperature troubleshooting 342
9.6.6 Current troubleshooting 342
9.7 Mismatched cell voltages troubleshooting 343
9.7.1 Identify the cause 343
9.7.2 Address the cause 344
      Not balancing 344
      Incorrect measurement 345
      Low capacity 345
      String balance 345
9.8 Evaluated data troubleshooting 346
9.8.1 State of Charge troubleshooting 346
9.8.2 Actual capacity troubleshooting 347
9.8.3 Actual resistance troubleshooting 347
9.8.4 State of Health troubleshooting 347
9.9 CAN bus troubleshooting 347
9.9.1 No communications 347
      Check the configuration 348
      Ohmmeter testing 348
      Voltmeter testing 348
      CAN adapter testing 349
9.9.2 Poor noise immunity 349
      Troubleshooting 350
      Minimize EMI sensitivity 350
      Minimize EMI emissions 350
9.10 Troubleshooting other communications 350
9.10.1 Windows GUI troubleshooting 350
      RS232 351
9.10.2 Command line terminal 351
9.10.3 Slave communications 351
9.11 Ground faults troubleshooting 352
9.12 Troubleshooting inputs and outputs 353
9.12.1 Digital inputs troubleshooting 353
9.12.2 Analog inputs troubleshooting 353
9.12.3 Logic outputs troubleshooting 354
9.12.4 Relay outputs troubleshooting 354
9.12.5 Analog outputs troubleshooting 354
9.12.6 Open drain drivers troubleshooting 354
9.13 Troubleshooting power circuits 356
9.13.1 Contactors troubleshooting 356
9.13.2 Precharge troubleshooting 357
9.14 Repair 357
9.14.1 Safety procedures 357
9.14.2 Cell replacement 357
9.14.3 Gross balancing in the field 358
9.14.4 BMS repair 358
      PCM and centralized BMU replacement 358
      Slave replacement 358
      Cell board replacement 358
      Bank board replacement 359
      Component level repair 359
Volume 2
Ch.Title Page
10 Small batteries 1
11 Large low voltage batteries 17
12 Traction batteries 178
13 High voltage stationary batteries 302
14 Accidents 350
15 BMS directory 368
16 Other directories 384
17 Appendix 399
Index 409

e-logo

© 2010 Elithion™, LLC. All rights reserved, except where noted by CC mark. Handcrafted on 8/6/10 by Davide, graphic design by morninglori
The Elithion brand and the 'ə' (upside down 'e') logo are Trademarks of Elithion LLC.